Hover over the dots to explore related posts. Closer dots are more semantically related, and the red dot marks the current page.
Hover over the dots to explore related posts. Closer dots are more semantically related, and the red dot marks the current page.
Much of what is discussed in social media is inspired by events in the news and, vice versa, social media provide us with a handle on the impact of news events. We address the following linking task: given a news article, find social media utterances that implicitly reference it. We follow a three-step approach: we derive multiple query models from a given source news article, which are then used to retrieve utterances from a target social media index, resulting in multiple ranked lists that we then merge using data fusion techniques. Query models are created by exploiting the structure of the source article and by using explicitly linked social media utterances that discuss the source article. To combat query drift resulting from the large volume of text, either in the source news article itself or in social media utterances explicitly linked to it, we introduce a graph-based method for selecting discriminative terms. For our experimental evaluation, we use data from Twitter, Digg, Delicious, the New York Times Community, Wikipedia, and the blogosphere to generate query models. We show that different query models, based on different data sources, provide complementary information and manage to retrieve different social media utterances from our target index. As a consequence, data fusion methods manage to significantly boost retrieval performance over individual approaches. Our graph-based term selection method is shown to help improve both effectiveness and efficiency.
[1] Manos Tsagkias, Maarten de Rijke, and Wouter Weerkamp. 2011. Linking online news and social media. In Proceedings of the fourth ACM international conference on Web search and data mining (WSDM ‘11). Association for Computing Machinery, New York, NY, USA, 565–574. ACM Link PDF