Inside The World’s Playlist

Wouter Weerkamp

Manos Tsagkias

Maarten de Rijke

ISLA, University of Amsterdam
w.weerkamp, e.tsagkias, derijke@uva.nl

ABSTRACT

We describe Streamwatchr, a real-time system for analyzing the
music listening behavior of people around the world. Streamwatchr
collects music-related tweets, extracts artists and songs, and visu-
alizes the results in three ways: (i) currently trending songs and
artists, (ii) newly discovered songs, and (iii) popularity statistics
per country and world-wide for both songs and artists.

Keywords

Music, stream processing

1. INTRODUCTION

Social media is changing the way we consume music. Online
music services such as iTunes, Spotify, last.fm, and YouTube, en-
able us to access music from everywhere, anytime, and share our
playlists with the world in the form of tweets, or status updates.
People tweeting the tracks they are currently listening to generate
more than half a million tweets per day. This offers us insights
into people’s music listening behavior at world scale. Historically,
this type of research has been mostly based on surveys, or music
charts [1]], either of which is limited in scope or use, as it is often
privately held. The most important drawback, though, we believe,
is the data gathering process itself, which decouples what people
listen to (or buy) from the context within which they do this this.
Social media can complement this data, as it is mostly about peo-
ple’s activities [3, [7], with music being an important one [S].

There are two major challenges in mining social media for study-
ing music listening behavior, except the sheer volume of incoming
data: (i) how to identify music related content, and (ii) how to deal
with the semi-structured, unedited nature of user generated con-
tent. For the first challenge, Hauger and Sched]l [2] used three pop-
ular music hashtags on Twitter for identifying tweets potentially
related to music: #iTunes, #nowplaying, and its shorthand, #np.
We use the same set of hashtags, plus #spotify. Tweets tagged with
#iTunes and #spotify are automatically generated by the respective
software music players, while those tagged with #nowplaying are
not associated with a particular source and may contain additional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM *13

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

information to the track, e.g., lyrics, or experiencesE}

For the second challenge, we follow [2,15] and use a set of reg-
ular expressions to generate a candidate set of artists and songs,
which we curate using the Musicbrainzﬂ database (an open music
knowledge base). Our difference with previous work is that we
use Youtube search for increasing the recall of our method, and
develop tailored webpage extractors for the #iTunes and #spotify
tagged tweets; we provide a comparison of these methods in the
next section. Another dimension to this challenge is to identify the
geolocation of a tweet. Schedl [4] uses the Yahoo! Placemaker
API for this purpose, however, we find that the rate limits imposed
by the service are not adequate for real-time use. We use Geon-
ames, |an open geo database, for mapping a tweet’s coordinates (or
extract the twitterer’s coordinates from their profile description, or
location) to a geolocation.

In this demonstrator we present Streamwatchr: a real-time sys-
tem for analyzing music listening behavior at world scale. Stream-
watchr aims at (i) mapping unstructured, user generated content to
structured data in real-time, and ii) providing up-to-date visualiza-
tions of what the world is listening to, what songs and artists are
trending, and what will be the next big music hit. Streamwatchr
can be accessed at: http://streamwatchr.com.

2. DATA AND BACKEND

Streamwatchr consists of a multi-stage approach for identifying
songs and artists from tweets. The process is informed by obser-
vations on a training set of manually annotated tweets tagged with
music-related hashtags. The assessment exercise revealed that the
difficulty of correctly extracting the artist and song from a tweet
ranges from very low to very high; see Table[T]for examples of both
easy- and hard-to-extract tweets. Also, many tweets originate from
radio stations which post their airplay. Streamwatchr ignores radio
users by filtering usernames that match “radio,” “fm,” or “play” in
them. Below, we describe our multi-stage approach.

Check hashtag. First, we check which hashtag is used to determine
the next step. #spotify and #itunes tweets are transferred to the
Page extraction stage, while #np and #nowplaying are moved to
the Baseline extraction stage.

Page extraction. We follow the URL contained within the tweet
and fetch the page. From this page we extract the artist and song,
according to site specific regexes.

Baseline extraction. If a tweet matches certain basic regexes, we
use these to extract candidate artist and song. These candidates are

!“Skip skip skip , emm haa . #np Hell above”
2“They say love is blind oh baby you so blind #np”
3http://musicbrainz.org
4http://www.geonames.org

http://streamwatchr.com
http://musicbrainz.org
http://www.geonames.org

Table 1: Examples of easy and hard to extract tweets.

Easy

#nowplaying Richard Marx - Angelia

#np funeral for a friend/love lies bleeding - dream theatre
#nowplaying Hey Soul Sister-Train

Hard (with answers)
They say love is blind oh baby you so blind. #np (G-Dragon -
That xx)

When you feel my heat Look into my eyes It’s where my
demons hide It’s where my demons hide Don’t get too close
It’s dark inside #np (Imagine Dragons - Demons)

you got mud on your face you big disgrace somebody better put
you back into your place #np #queen #wewillrockyou (Queen -
We will rock you)

then issued to MusicBrainz and if a match is found on the combina-
tion of artist and song, we store this result. If not, or if the regexes
do not match anything, we continue to the next stage.

Youtube extraction. Based on the observation that people of-
ten refer to songs using lyrics, misspelled names, or other ways
of “creative” writing, we need a large, music-related source with
user-generated content. Youtube fits this description, as it is one of
the main platforms for music (video) dissemination, in which each
video comes with user-generated metadata (e.g., lyrics, comments,
tags). We use the full tweet as query to Youtube, filter the results
by category (Music), and retrieve the top 10 results. We then use
regexes to extract candidate artists and songs from all results and
rank these by weighted frequency (first result is more important
than result 10). We move down the ranked list and try to match
combinations of candidates (as song and artist) in MusicBrainz. In
case a match is found, we store the result, otherwise we move to
the final step.

Fuzzy extraction. In case we cannot find an exact match in Music-
Brainz, we look for a matching artist in our candidate list from the
Youtube extraction stage. Having found an artist, we use the other
top candidate as song, even though we might not be able to match
it in MusicBrainz.

The multi-stage approach ensures an efficient approach by start-
ing with fast methods (Page and Baseline) and only moving to
more expensive methods if the fast methods fail.

To develop and test our extraction pipeline we need a set of anno-
tated tweets. To this end we manually annotate two sets of tweets,
which contain the hashtags #np and #nowplaying. We ignore the
other hashtags as they depend solely on the Page extraction step,
which we is too basic to fail. From the two sets of tweets one
is used as training and development set (consisting of 250 tweets)
and the other set is used as test set (200 tweets). For all tweets
we identify the song title and artists, including their MusicBrainz
identifier. Tweets for which either the song, the artist, or both are
missing are annotated with “UNK” for the particular field.

To test the various extraction methods we apply our complete
pipeline to the tweets in the test set and record the extracted infor-
mation and the method that is responsible for this information. So,
if a tweet can be “solved” by the Baseline extraction, we record
its solution and the fact that this method found this. Table 2] shows
the results from the extraction methods. Note that these results, if a
tweets is annotated with “UNK” and a method assigned a real band
or song it is listed as an error.

Table 2: Test results in Precision, Recall, and F-measure of
three extraction methods and their combination (All) for songs
(top) and artists (bottom). Recall is measured over the number
of tweets offered to the method (e.g., Youtube only processes
tweets that Baseline could not resolve).

Method Tweets P R F
Songs

Baseline 29/200 0.9655 0.1400 0.2445
Youtube 96/171 0.7188 0.4035 0.5169
Fuzzy 41/75 0.3902 0.2133 0.2758
All 166/200 0.6807 0.5650 0.6175
Artists

Baseline 29/200 0.9655 0.1400 0.2445
Youtube 96/171 0.7396 0.4152 0.5318
Fuzzy 41/75 0.5610 0.3067 0.3966
All 166/200 0.7349 0.6100 0.6667

The results show what we expected to find: the Baseline method
performs extremely well on precision, missing only one of the 29
extracted song and artist pairs. At the same time, this method is
only capable of processing 14.5% of all tweets (29 out of 200).
Most previous work on Twitter and music (e.g., [2} 4} 15]) only re-
port on using regular expressions on tweets to extract information.
Our analysis suggests this leads to a significant loss in information.

For those tweets for which regular expressions fail, we apply our
Youtube-based method. We find an increase of recall compared to
the baseline, combined with a drop in precision. This method is
capable of dealing with almost half of the total number of tweets,
and more than half of the tweets offered to this method. The pre-
cision of this method remains fairly high, something which does
not hold for the Fuzzy method. This method shows a substantial
drop in precision, especially for song titles. However, because of
the relatively high recall its F-measure is still higher than that of
the Baseline method.

Finally, if we combine the methods into our complete pipeline
(All), we obtain the highest recall and F-measure scores for both
song title and artist name extraction.

3. INTERACTIONS AND VISUALIZATIONS

The extraction of song titles and artists is only a necessary step in
our demonstrator to support four types of analyses. In this section
we discuss four functions our demonstrator offers to gain insights
in the listening behavior of people: charts, currently popular, dis-
covery, geo analysis.

3.1 Charts

One of the obvious functions our demonstrator offers are charts.
We collect statistics for both songs and individual artists on an
hourly basis, which allows us to plot the number of plays on a
fairly detailed level. Aggregating the data, we can show plots for
any time period at any detail level (e.g., per month or per year). By
plotting the data users can quickly identify trends in popularity or
(un)expected peaks in listening behavior.

3.2 Currently popular

While the charts represent a somewhat old fashioned view of
popularity, the currently popular function of our demonstrator tries
to exploit the stream character of Twitter. As the tweets, and there-
fore the music, flows into Streamwatchr as a stream, we want to
present the user with a real-time list of the most popular artists. A

traditional popularity ranking would monitor the stream for a set
period of time, counting plays of each song, and after this period
report on the final ranking. Streamwatchr, however, uses a metric
that rewards songs that are played often in a short period of time
and punishes songs that were not played for a while.

More formally, Equation [T] represents our temporal popularity
score, tp, for item x (song or artist) at time ¢:

1 if tpi—1(x) =0,
tpt(m) = _[35‘:'7’—1 .
tpi—1(x) - e o 4+ 1 otherwise.

Here, 3 is a parameter indicating the “damping” factor (we set
B = 0.693), 0 +—1 represents the difference in seconds between
this occurrence and the previous occurrence of x, and 6 is the time
unit, which we set to 60. From the equation we can see that if an
item occurs for the first time, it is assigned score 1 and as soon
as it is played again, we damp the current score. Items that occur
frequently in a short period of time damp less and receive a higher
score. The proposed method requires all items to be updated when
a new occurrence enters the system. Given the amounts of data we
are processing this is not feasible. We therefore use the equation to
update the items that actually occur and use a second script, which
runs every one minute, to update all items before publishing the
popularity ranking.

The top of the resulting list of songs or artists represents what is
currently popular on Twitter and this can be used as input to, for
example, apps that allow users to play the currently trending music
or to systems that inform radio stations and clubs about the popular
music of this moment.

ey

3.3 Music discovery

One of the hardest things for music lovers is to keep track of
new music. Since we are monitoring music listening behavior con-
tinuously, we can quickly detect new music that is on the rise. By
presenting newly discovered songs in Streamwatchr we offer a ser-
vice to people looking for easy access to new music.

We employ a heuristic method to discover new music. First, a
song needs to have at least 50 plays in one hour to be added to our
list of candidate discoveries. We remove songs that have previously
been discovered and finally check to see if the song was already
played more than a week ago. The intuitions behind these decisions
are the following: (i) For a song to be discovered it needs to have a
certain level of attractiveness, represented by a substantial number
of plays within an hour. (ii) Songs that were already played more
than a week ago are not considered to be “new” and can therefore
not be discovered. A typical pattern we find for songs that should be
discovered by Streamwatchr shows a couple of spread out plays in
the 2-3 days before discovery, followed by a sudden move upwards
in the number of plays. We aim at presenting new songs to users of
Streamwatchr right at the beginning of this move upwards.

3.4 Geo analysis

The final analysis that is facilitated by the demonstrator are location-

based charts. When possible we extract the geo information from
tweets using either the coordinates in the tweet or the user-provided
location string in a user’s profile. Although the percentage of geo-
tagged tweets is very low (~1%), we believe that showing local
charts can prove insightful for many users.

Using a map of the world we allow users to select the country
for which they want to explore the charts. As mentioned before, we
store plays for artists and songs on an hourly basis, which allows
for detailed analysis. For future extensions we plan to implement
comparison possibilities between countries, e.g., show popularity
for an artist or song for two or more countries at the same time in

a plot, or use different colors on the world map to indicate the date
when a song became popular in particular countries. This allows
for analyzing which countries play an important role in defining
the world music scene.

4. FUTURE EXTENSIONS

Although Streamwatchr in its current form allows for various
ways of analyzing and accessing music data, we envision three im-
portant and useful future extensions. First, to improve the level of
insights we can gain from the data, we want to offer comparisons
between either artists or between countries. In case of the former,
we would like to offer the possibility to add multiple artists (or
songs) to plots as to compare the popularity of two or more items
over the same period of time. Similarly, we would also like to be
able to add multiple countries to the plot of one song or artist, or to
visualize the data on the world map using different shades of color
(e.g., How long has a song been popular?).

A second extension is automatic peak detection and explanation.
From observing plots we can see that certain artists have peaks in
which many people listen to their songs. This raises an interest-
ing question: why are all these people listening to this artist? To
answer this question we want to implement a method that automati-
cally detects peaks [6] and, more importantly, tries to automatically
explain why this peak appears.

Finally, we want to look into contextualizing music. We are us-
ing Twitter and people do not only post #np tweets, but also other,
more informative, messages. To what extent we can use these other
tweets to contextualize reports on listening to music? What do peo-
ple do just before or after listening to a song?

S. CONCLUSIONS

We have described Streamwatchr, which aims to give new in-
sights into people’s music listening behavior as reported on Twit-
ter. Streamwatchr extracts song title and artist information from
music-related tweets and presents it in a variety of ways: (i) tra-
ditional charts and (ii) location-based counterparts, (iii) real-time
popularity rankings, and (iv) discovery of new music.

6. REFERENCES

[1] D.J. Hargreaves, D. Miell, and Raymond. What Are Musical
Identities, and Why Are They Important? Oxford University
Press, USA, 2002.

[2] D. Hauger and M. Schedl. Exploring Geospatial Music Lis-
tening Patterns in Microblog Data. In AMR 12, Copenhagen,
Denmark, October 2012.

[3] A. Java, X. Song, T. Finin, and B. Tseng. Why we twit-

ter: understanding microblogging usage and communities. In

WebKDD/SNA-KDD 07, pages 56-65. ACM, 2007.

M. Schedl. Leveraging Microblogs for Spatiotemporal Music

Information Retrieval. In ECIR ’13, March 2013.

[5] M. Schedl and D. Hauger. Mining Microblogs to Infer Music
Artist Similarity and Cultural Listening Patterns. In AdMIRe
’12, April 2012.

[6] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Iden-
tifying similarities, periodicities and bursts for online search
queries. In SIGMOD 04, pages 131-142. ACM, 2004.

[71 W. Weerkamp and M. de Rijke. Activity prediction: A twitter-
based exploration. In TAIA ’12,2012.

[4

—

	1 Introduction
	2 Data and Backend
	3 Interactions and Visualizations
	3.1 Charts
	3.2 Currently popular
	3.3 Music discovery
	3.4 Geo analysis

	4 Future extensions
	5 Conclusions
	6 References

